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to a nuisance parameter is considered. A test is said to be adaptive if it is
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asymptotically optimal regardless of the value of the nuisance parameter. The
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the probability of type I error converges to zero exponentially fast at a fixed ~
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1 Introduction

Let x = (z1,-..,Zs) be n independent, identically, distributed observations on a
random variable X having distribution P or Q. It is desired to test the null hy-
pothesis that X has distribution P versus the alternative that X has distribution
Q.

Let ¢n = ¢n(X) be any test function. Let A be a non-negative number. As
in Tusnady (1977), a sequence of test functions {¢,} is said to have exponential

rate A if
limsup, ., Ep¢n <1, when A =0,

limsup,_,,, n"!log Ep¢n < —A, when A > 0.

(1.1)

Let ®4(P) be the set of all sequences of tests that have exponential rate A. Let
B(A,P,Q) = —inf{liminfn™" log Eq(1 — ¢a) : {#} € ®4(P)}. (1.2)

In other words, B(A, P, Q) is the optimal exponential rate at which the proba-
bility of type II error can converge to zero. A sequence of tests {¢n} in ®4(P) is
said to be asymptotically optimal if

liminf n~* log Eq(1 — ¢a) = —B(4, P, Q).

Let the densities of P,Q be denoted by p(z), ¢(z) respectively. It is assumed
that Ep(q(z)/p(z))! < oo for all t. It is known that (see Bahadur (1971)) if
limpoo Epdn = a,0 < a < 1 (so that the sequence of tests {¢n} is of exponential
rate 0), then B(0,P,Q) = K(P,Q) where K(P,Q) = Eplog(p(z)/q(z)) is the
Kullback-Leibler information number.

When A > 0, it is shown in Blahut (1974), Tusn4dy (1977), and Birgé (1981)
that

~ B(A,P,Q) = inf {tC + log Eg (%) } (1.3)

where C is determined by

— 4= ir)lg{—tC+long (‘-’%ﬂ)t} (1.4)

p(z)
Futhermore, if 0 < A < K(Q, P), then B = B(A,P,Q) > 0 and

A=B+C. (1.5)
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A similar notion of asymptotic optimality for composite hypotheses has been
investigated in Bahadur (1960), Hoeffding (1965), Brown (1971), Tusnady (1977)
and Birgé (1981).

Now assume that the distributions P and Q are not determined exactly,

but only up to a finite-valued nuisance parameter r,7 = 1,...,l. For example,
a message, in one of ! posssible languages using the same alphabets, is to be
transmitted through a noisy channel n times and a choice has to be made between
two possible messages or rather the probability distributions associated with the
messages, without knowing which language is used. Another example is that
there are | measurement types and for each type a, the measurement has two
possible distributions P, and Q,. Thus, one has to test P, versus Q, with «a
unknown.

Let A;,...,A; be fixed positive numbers. A test ¢2 is called an adaptive test
if it is an asymptotically optimal test of rate A, for each value of the nuisance

parameter a. That is, ¢% is adaptive if for each «,

limsup,_,,,n"'log Eg¢: < —A,and

1.6
liminfp.eo n ' log EG(1 — 43%) = —B(Aq, Pa,Qa)- -

The existence of adaptive tests of rate O has been investigated in Rukhin
(1982,1986). A necessary and sufficient condition for the existence of such a test is
that K(P,,Qs) > K(Ps, Qp) for all @, 8. It is shown in section 2 that for adaptive
tests to exist, any two distributions P,,Qg,a # B cannot be more ‘difficult’ to
distinguish than P,,Q,. Here, ‘difficulty’ in distinguishing two distributions is
measured by the rate of convergence of the type II error. When an adaptive test
exists, it is shown that a weighted likelihood ratio test with weights depending
on the rates of convergence of the type I and II errors is always adaptive. An

overall maximum likelihood ratio test may not be adaptive.

2 Condition for the Existence of Adaptive Tests

Let pa(z),qa(z) be the densities of P,, Q. respectively. Let A;,...,A; be posi-
tive constants and denote B(Aq, Pa, Qp), C(Aa, Pay @p) by Bag, Cap respectively.
Also, let Y(t|P.,Qp) = Ef(gs(z)/pa(z))'. Assume that 9(t|P.,Qp) < oo for
all t, for all a,8. Note that ¥(t|P,, Q@) is the moment generating function of
log(gs(z)/pa(z)), thus by the finiteness assumption, ¢ (t|P,, @g) is strictly convex
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and differentiable, indeed differentiation can be carried out under the expectation :,:.
3
sign. Let (
o
X

max, e"Bee [[%_, qu(z; ’
T = Ta(x) = n"'log o — H 1 90(%) (2.1) W

max, e™e []7_; pa(z;)
Let ¢n = @n(x) be a test with critical region given by T,, > 0, i.e. A
)
1 fT,>0

¢n = n . (22) "
0 otherwise. )
Theorem 2.1 Assume that 0 < A, < ming K(Qg, Pa), for all a. If Bgy > Bas "
for all £, a, then ¢, is an adaptive test. '3'
5 NG
Proof. We first show that ¢, has exponential rate A, for every a. Since, 2

; max, e"Bﬂﬂ n T Y
' E}G:¢n S Pﬂ (n—llog ) HJ lqﬁ( J) Z 0) :

enhe L= 7=1Pa(z5)
: "B I17_, g(;) R
< P,{ntlog 1 22> 0) 5
ﬁJZ::l ( en4e [17-) pa(z;) -
4
< 1 maxP _1Zlog Qﬁ ) BB[’ l\'\'
s Pa(z ) )
=
and A
!. " "!
! P -1 2”: 1 qﬁ (2‘,) > A B < e-—nt(Aa—Bﬁp) Ea (qﬁ(x) ) ‘ "
¢ x| n og ——~ > Ay — < A
j=1 Pa(z;) * o d Pa(z) N
» . :*
for any t > 0, it follows that, S
bt
4 ‘.'
E3n < 1 - maxinf e~ (4==59) (1| Pa, Q)™ 0
}
; Therefore, 3
) ‘\ 4
! limsupn~'log Ef¢n < maxinf{~t(As — Bsg) + log ¥(t|Pa, Qp)} e
h n—oo0 8 t>0 N
< mg‘x ggg{"t(Aa - Baﬂ) + log d’(thav Qﬁ)} &
)
4 = —A, -
)
as Aq — Bap = Cap by (1.5).
Y
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Since ¢, is a test of exponential rate A, for each a, to show that ¢, is an
adaptive test, it is enough to show that liminf, .. n~!log E§(1 — ¢n) £ —Baa.
Now,

ES(I _¢n) Sl'ma-an n—IEIOg'p_p(z—j) > Baa - Aﬂ ]
L j=1 qa(zj)

and so, by a similar argument, one obtains
liminf n™'log E3(1 - ¢a) < max inf{—t(Baa — Ap) + log ¥(t|Qa, Pp)}. (2.3)

Since the function log ¥(t|Qa, Ps) is strictly convex, there exist 0 < to < 1 such
that —Bga = toCpa + log ¥(t0|Qq, Ps). Therefore,

infeso{—t(Baa — Ap) + log ¥(t|Qa, Fs)}

< —to(Baa — Ap) + log ¥(t0|Qa; Fs)

= —Bga + (1 — to) Baa + toAg — Bga — to(Ap — Bsa)
= —Baa + (1 — to)(Baa — Bga)

< = Bga-

Thus, from (2.3), liminf, ., n~!log E3(1 — ¢n) < —Baa, for all a and ¢, is an
adaptive test. O

A necessary condition for the existence of adaptive tests is obtained by consid-
ering the asymptotic behaviour of the most powerful test of the simple hypothesis
[17-1 Pa(z;) versus the simple alternative w, [I}_; ga(z;) + ws I1}-, gs(z;), @ # B,
where w; = €™ /(e™= + e™4),k = o, 3, and b,,bs are real numbers.

For the remainder of this section, we assume that P,,Q, are absolutely con-
tinuous with respect to the Lebesgue measure for all a. Let Qn denote the dis-
tribution with density w, [T}-; ¢a(2;) + wp I1}-, gs(z;). Let ¢ be the following
likelihood ratio test :

1 if Wa Hni=lq°(:j)+wp H;:lqp(zf) >
¢a = Hj:x Pc(’}')

n
0 otherwise,

n

where ¢,, is a constant.
Lemma 2.1 For a fixed a, if limpo n7! log Eg¢2 = —A,, then

lim n~'log Eg (1 - ¢7) = E}g-’é(bk + Pak(ba, bg,C)) — b,
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where pak(ba, b5, C) = inf,e50{s(C — b,) + t(C — bg) + log EQ(q (z)) (;_;(Lg)t} and
C= maka,g(C,,k + bk),B = ma.x(ba, bﬂ)

Proof. We first show that the assumption implies that lim, .o ¢, = C —b. From

the definition of ¢Z, one obtains

. -1 a L
JLngon log Ep ¢,

< liminfrn 'log Py [n~'log2- ma.xwkH %(z;) > cCn
n—oo a,p im lpa( )

< ;Ez.)éhgx*vnfn log P, ( -1 Zlog qk(zJ) > ¢, — by + +n"tlog %)

< E%igg{—t(é — b +5) + logt,b( |Pay Qi) }

where w = e™= + e™8,C = limsup,_,,, ¢n. Therefore, infy5o{—t(C — b, +b) +
log ¥(t|Pa, Qi) } > infiso{—tCor + log ¥(t|Pa, Q) } for £ = a or 4. This implies
that € — b, + 5 < Co, for k = a or B3, i.e.

C < max(Cas + by) . (2.4)

Also, Eg¢% > Pa(n~!log wy [T}, (qk(2;)/Pa(z;)) > ¢n) for k = @ and . Thus

Egd’: > Ei’épa ( 1210 Z:(-'E’)) - bk + n~} log w) .

Using a similar argument as above, one obtains, for k = a and S,
%gg{—tcak + log ¥(t| P, Q&) } > §I>1g{—t(Q — b + b) + log ¥ (t| Pa, Qi)},
where C = liminfp— o ¢,. Hence, Cox < C — b + b for each &, i.e
C > n__la’é(cak + bi) - b. (2.5)

Equations (2.4) and (2.5) imply that lim,_o ¢n = C — b. Now,

Eé(l—tﬁ‘,",) < Q& ( llogma.xwquk )<c,,)

k=a,p j=1 pa(xJ)

n .
Qx n'l}:logg"—(x—’- <en—br+nltlogw,k=a,p
5=1 pa(zJ)



Similarly,

Pa(z;)
Applying Theorem 5.1 of Groeneboom et al. (1979), (2.6) and (2.7) imply that

E§(1-¢2) > Qs ( -1 Zlog a(z;) ’) <epn—bp+n7? Iog%,k = a,ﬁ) . (2.7

lim n~'log E§(1 — 47) = pak(bas bs, C)
for k = a,B. Since Eg (1 - ¢2) = waE§(1 — ¢2) + wpES(1 — ¢2), we have
Jim n~log E5.(1-¢7) = max lir lim n~ Yog wi EG(1 — ¢2)

and the result follows. 0

Since ¢ is the most powerful test of [}_; pa(z;) versus w,[l}-; ¢a(z;) +
wp [1}.; gs(z;), this yields the following

Corollary 2.1 For any test ¢;, such that limsup, ,  n~!log Eg¢; < —A,, for
a fixed o

=a,B

max (b + liminf n™" log E¢(1 — ¢;)) > B'_la.)é(bk + pak(ba, bs, C))
forany § =1,...,l and any b,,...,b.
Corollary 2.2 pai(ba,bs,C) > —B(Aa, Fa, Qi) k = o, 8.

Proof. As shown in the proof of lemma 2.1, lim,_,o, n ! log E§¢% = — A, implies
that lim,_. n!log Eé(l — ¢2%) = pai(ba,bs,C) for k = a,B. Since, as a test of

P, versus @4, #5 has exponential rate A,, the result follows from (1.2). O
Theorem 2.2 If an adaptive test exists, then for all o, 8
Baa S Bﬁa-

Proof. Let ¢2 be an adaptive test. Since ¢4 satisfies the condition in corollary

2.1, by letting b, = Ba, and bg = Bgg, one obtains

0= maX(Bkk — Byi) > ma-x(Bkk + Pak(Baas Bps, C)),

i.e. pak{Baa,Bss,C) < —By for k = a,. But, from corollary 2.2, with k =
B, Pap(BaasBgs, C) > —By,g, so that Bgs < Bag. Since a,f are arbitrary, the
result follows. ]

Hence from Theorems 2.1 and 2.2 we have established
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Corollary 2.3 If P,,Q, are absolutely ccntinuous with respect to the Lebesgue

measure for all o, then an adaptive test exists iff for all o, 8,
B,s < Bg,. (2.8)

From the proof of theorem 2, we see that if an adaptive test exists, then
pap(Baas Bps, C) < —Bpgg for all a,B. Suppose that P, = Qg for some a #
B. Assume that Ag satisfies the condition in theorem 2.1, in particular 45 <

K(Qg, Ps), i.e. Bgg > 0. Consider

Pap(Baa,Bﬁp,C)
= inf {s(C’ — Baa) + t{(C — Bpp) + log ES (ﬁg) (m(r)) }

8,t>0 qﬂ(x)
> inf {s(C — Baa) + log E5 (28) } +inf{t(C — Bgs)}- (2.9)

The second term of (2.9) is zero because C — Bgg = maX=q,8(Cak + Bix) — Bgs >
C.s > O when P, = Qp. Let f(s) be the function in the paranthesis of the
first term in (2.9). Then f'(0) = C — Baa + E‘g log pa(2)/qa(z) = C — Baa +
K(PayQa) > Caa + K(Pa, Qo) > 0. Since f(s) is a convex function, this implies
that inf,5o f(s) = 0. That is pap(Baa, Bas, C) = 0. But, by assumption Bgs > 0,
and inequality pns(Baa,Bgs,C) < —Bgp is impossible, and hence adaptive test

cannot exist. This yields
Corollary 2.4 If P, = Q4 for some a # f3, then an adaptive test does not exist.

Remarks. 1. If P, = P for some P for all a, then (2.8) always holds, i.e. an
adaptive test always exists.

2. By interchanging the roles of P,,Q,, we can define a similar notion of
adaptation, i.e. a test is adaptive if the type II error converges to zero at a
guranteed rate while the type I error converges to zero at the optimal rate. Thus
a test with the following properties:

limsupn~'log EZ(1 — ¢,) < —Aq and

liminfn~'log E3¢n = — B(Aa, Qa, Pa)

exists iff

B(AaannPa) _<_ B(Aﬂ7Qﬁ»Pu)a for a’ﬂ = 11‘-'11- (210)
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It is easy to see that limu, .o+ B(Ag, @p, Pa) = K(Qp, Pa). Thus, by setting 4; =
-+« = A; = 0, i.e. by letting the type II error converges to a positive constant,
condition (2.10) becomes K(Qa,P.) < K(Qg,Pa). This result is obtained in
Rukhin (1986).

3. Corollary 2.3 can be extended to the case when the nuisance parameter
has countably many values. Assume that infg K(Qg,P,) > 0 and 0 < 4, <
infg K(Qp, Pa) for every . Let {k,} be a non-decreasing sequence such that

n~llog k, — 0 as n — oo. Consider the following test:

N -1 maxg<k, enaﬂﬁ n;;; qﬂ(z.i)
. 1 if n™'log Y Yo >
¢ = maxg<r, ¢ 8 [[7_ pa(z;)
0 otherwise,

Using corollaries 2.1 and 2.2, it is clear that if an adaptive test exists, then (2.8)
holds for all a,8. We claim that ¢;, is an adaptive test if (2.8) holds. We first
show that ¢, is a test of rate A, for every a. Pick n large enough so that a < k,,
then

Eg¢. < k, - maxinf e~™(4==Bso) (y(t| P,, Q5))".

B<k, t>0

From the proof of theorem 2.1. inf;5{e~*(4==Bs8)y(t| P,, Q5)} < e #=, for any 8.
Thus,

oz

;‘:-_-.. S <

P

..rv w € 2 -s-—..-i;

o
‘e
limsupn~!log Epd, < lim n~'logkn, — Aq 9.
n—oc n—oo .
— —A.. 3]
\.
)
Now, we show that type II error of the test ¢ converges to zero at the optimal o
rate. Using the same argument as above :f:
H H -1 . ..: :
lxﬂg)lfn log E5(1 — ¢;)
< supinf{—t(Baa — Ap) + log ¥(t|Qa, Ps)} + lim n"'logk, ',
8 t>0 n—oo _;_-
S _Baa- :.-
Hence, ¢, is an adaptive test. \
4. When an adaptive test exists, then the test defined in (2.2) is always adap- ’
tive. However, an overall maximum likelihood ratio test, i.c. a test with critical _‘.‘:
region {x : max, [} 9«(z;)/ max, [1}_, pa(z;) > €™}, for some constant c,, is s
not necessarily adaptive even when an adaptive test exists. Let é, denote such a "o
L
o
s
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test. If ¢, = maxy=q,p Cap, then it can be shown that qAb,, is a test of rate A, for
each . If A,,a=1,...,! are picked such that C;; = --- = Cy, then a sufficient
condition for the test ¢, to be adaptive is that Bag > Bgp+to(C—Cag) where C =
maXa,g Cag, ta = MaXgtga, and tg, is the point where —tC,p + log ¥)(t| Py, Qp)

attains its minimum.

3 Example

Let P,,Q, belong to an exponential family with densities p,, ¢, given by

Pa(z) = exP{E;x —x(éa)}

¢a(z) = exp{n,z — x(na)}-

Let g(t,u) = —tu + log ¥(t|Pa, @p)- By a straightforward calculation,

B(t1PaQs) = [expt{ngz — €,z — x(ng) + x(€a)} exp{€Lx — x(%a)}dz
= exp{—(1 - t)x(&a) —tx(ns) + x(tng + (1 - t)&a)}.

Thus, g(t,u) = —tu — (1 — t)x(&) — tx{ns) + x(tns + (1 — t)&,). Therefore we
have

g (t) = —u+x(&) — x(ns) + x (tns + (1 — t) &),
where g', x" are derivitives of g, x with respect to t.

If sop satisfies

SasX (SapMe + (1 — Sap)€a) — X(SagMs + (1 — ap)€a) + X(&a) = Aa,  (3.1)

and let
Caﬁ(Aa) = X("Iﬂ) - X(fa) - X' (saﬁnﬁ + (1 - saﬁ)fa)’ (3'2)

then g(saps,Cas) = —Aq and ¢'(sag,Cag) = 0.
Suppose 0 < A, < ming K(Qg, P,), for each a, then an adaptive test exists
iff
Aa — x(np) + x(&a) + X'(Saﬂ'lﬁ + (1 — sap)éa)
> Ap — x(ng) + x(€8) + X (sgma + (1 — 55)€5)
or,

X(€a) = X(€6) + X (Sapmp + (1~ 5ap)€a) — X (samp + (1 — 55)€5) > Ap — Ao (3.3)
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': Suppose Py ~ N(04,1),Qa ~ N(tta,1), then K(Qg, Po) = 27! (g — 0,)? and
f;f, 1
Xltms + (1= )€) = (tmp + (1~ 1)6a)",
s X (tng+(1—t)€a) = (tws+ (1 —1)6a)(1p — ba).
X
:Z It is easy to check that s,5 = ,/C‘BL_-"— :i%), satisfies (3.1), and it follows from (3.2)
2 that
. Cas(Aa) = (”ﬁ“’a)’(%/“f* _1)
b @i 2 \lup—ba
N Thus, if 0 < 4, < ming27'(us — 0,)* , then an adaptive test exists iff for all
p a#p
N
24, 1 . V248 1
Iy ba—0) | ———— — =] — (o — 0 — —— | > Ag— A,. (34
8 ( ) (l#a—aal 2) (ke = o) e —0s] 2 ? (34)
: For example, when 6, = —1,u, = 1;0;, = —1.5,u;, = 0.5, 4; = 0.5, 4, =
: 1.125, then Cy; = 0,Cy; = 0.375,C%; = 0.625,C2; = 1 and the above condition
,:. is satisfied. (Here Bu = Bn = 0.5,322 = Blz = 0.125).
l‘, Consider the following overall maximum likelihood ratio test with the above
)
! parametric values:
1)
! n
! . 1 ifn"llog T az12 Hi;:‘qa(zj) >
4 dulx) = mewamia T, pale)
K 0 otherwise.
; If the critical constant C is chosen such that C = rax,g Cag(A,) = 1, then &y is
a test of exponential rate A, for a = 1,2. Now, consider the rate of convergence
¥ of the probability of type two error:
b
P lim n~'log EZ(1 — é,) = max inf { (s + t) + log EJ Pe(z))" (Pe(z))’ .
n— oo Q " k=1,2s,t>0 Q qQ1 (1:) Q'Z(I)
(3.5)
; When a = 2,
v
" ] t
) 2 Pk(x)) (Pk(z)) 1 2 2
\ E = exp—-{s{l —s) (0 —u1)* +t(1 —t)(0x — pu2)* +
L Q (th(-'r) 7:(z) P 2{ ( ) (0x 1) ( ) (0 — 12)
2t(0r — py) (1 — p2) — 25t(0 — p2) (0 — 11)}- .
o~
¥ Consider k = 1 and let the expression in the parenthesis ¢ {3.5) be g(s,t), i.e. 2
[ Y
B 9 -
. g(s,t) =s+t—§t(1—t)—23(1—s)+s+3st. 5
P
)
)
L)
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By differentiating g with respect to s and t, one can show that (8/ds)g and

(8/dt)g do not vanish simultaneously and therefore
’1’{1>fog(s,t) = mln{:r;gg(s,O),%r;gg(o,t)}.

By a straightforward calculation, inf, ;50 g(s,t) =~ —.0035. Hence,
'}L% n~llog Eé(l - qSA,,) > —.125 = —B,,

and it follows that qgn is not an adaptive test.

Note that in this example, the critical constant C = 1 is the ‘best’ in the
sense that qS‘,. is a test of exponential rate A, fo reach a. If C is replaced by
¢, in the definition of d;,. such that liminfa—c ¢, = C' < 1, then by a similar

calculation as above, one can show that limsup,_, ., n " !log E},qAS,, > —A,.
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